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Abstract

I propose a method for univariate Kernel Density Estimation (KDE), for bounded support

probability density functions, on Homomorphically Encrypted (HE) data. The estimator, called

HE-KDE, facilitates outsourcing nonparametric density estimation to a semi-honest cloud with-

out exposing the non-encrypted data. HE-KDE locally approximates a kernel function with a

polynomial. In contrast to kernels typically used for non-encrypted KDE, the polynomial can

be natively evaluated on ring-homomorphically encrypted data.

The density estimator is non-negative, and its integral is bounded by one. However, it is

defective as it need not integrate to one. There is a trade-off between minimising the Mean Inte-

grated Square Error (MISE) of the estimator and maximising encryption security. A polynomial

balancing these two goals is designed. Asymptotically, it ensures that the MISE converges to

zero, and provides encryption security.

Applications on simulated data are presented, using Homomorphic Encryption for Arith-

metic of Approximate Numbers (HEAAN, Cheon et al. (2017)).
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1. Introduction

Consider a client, who has sensitive data, and a cloud provider, who has large computational

capacity. The client wants to outsource statistical computation to the cloud while protecting

the data. Homomorphic Encryption (HE) facilitates computation on encrypted data, providing

data protection as follows. The client encrypts the data with HE. The encrypted data are sent

to the cloud, which does the computation. The result, still encrypted, is sent back to the client,

who decrypts it (see Figure 1). During this process only the client sees the non-encrypted data,

so the data are protected.

HE has been applied with a number of statistical methods (Yang et al., 2019), but applica-

tions with nonparametric statistics are rare. In my thesis, the use of HE with Kernel Density

Estimation (KDE), a popular nonparametric method for data exploration, is addressed. To the

best of my knowledge, this work is the first to devise kernel density estimation on homomor-

phically encrypted data.

I propose a method for univariate density estimation where the support of the estimated

density is a bounded real interval. The estimator, called HE-KDE, is based on a polynomial that

can be natively evaluated on homomorphically encrypted data more efficiently than kernels used

on non-encrypted data. The bias, and upper bounds on the variance and the Mean Integrated

Square Error (MISE) are derived analytically together with the MISE-optimal bandwidth.

There is a trade-off between minimising MISE and maximising security of the encryption with

respect to the polynomial. A polynomial balancing these two goals is designed, ensuring MISE

convergence and encryption security when the sample size used for estimation goes to infinity.

General notation is introduced in the next subsection. Section 2 describes HE and its ap-

plications. Section 3 describes why and how kernel density estimation is made compatible with

HE. Section 4 contains applications of HE-KDE to simulated data.1

Figure 1: Homomorphic Encryption Workflow

Client

Cloud

Step 1: encrypt data with HE b→ µ

Step 2: compute result µ

Step 3: decrypt result µ→ b

send encrypted data µ send encrypted result µ

Notes: µ denotes encrypted, b denotes non-encrypted data.

1Codes are available at github.com/kmmate/mphil_thesis_codes
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1.1. General Notation

Symbols =⇒ , ⇐= mean implies and implied by, respectively. ⇐⇒ means if and only if.

Symbols ∀ and ∃ mean for all and there exists, respectively. Symbols = and 6= mean equal and

not equal, respectively. a := b means set a equal to b, or set a equal to the output of b if b is an

algorithm. b =: a means the same thing. a → b either specifies a function mapping from a to

b or the convergence of a to b. {a, b} is a set with elements a, b. |a| is the cardinality of set a.

a ∈ b (a /∈ b) means that a is (not an) element of a set b. For sets a, b, a ∩ b is the intersection,

a ∪ b is the union; a ⊂ b means that a is a subset of b.

−a and a−1 are the additive and multiplicative inverses of a, respectively. 0 and 1 are

the additive and multiplicative idenities, respectively. a + b, a − b, a · b, a/b are addition,

substraction (addition to additive inverse of b), multiplication and division (multiplication with

multiplicative inverse of b), respectively. ✶ is the indicator function. lim,
∑

,
∫

, mod, loga are the

limit, summation, integral, modulo and logarithm of base a operations, respectively. gcd(a, b)

is the greatest common divisor of scalars a, b. inf means infimum, sup means supremum. min

is minimum, max is maximum. ∞ is infinity.

C, N and R denote the complex, natural and real numbers, respectively. 0 ∈ N. Let N≥a,R≥a

denote all naturals and reals, respectively, larger than or equal to a ∈ R. Let this definition

naturally extend to ≤, <,>. R+,R++ stand for R≥0,R>0, respectively. For a ∈ C, |a| is the

absolute value of a, ā is the complex conjugate. [a, b] with a, b ∈ R, a ≤ b is a closed interval. For

a ∈ R+, [+−a] := [−a, a]. All vectors are column vectors, and are denoted by a = (aj)j∈I ∈ b|I|

with elements ai ∈ b, i ∈ I, for some ordered index set I and some set b. For n ∈ N≥1,

[n] := {1, 2, . . . , n} is an ordered (index) set. For n ∈ N≥1, 1n ∈ R
n is an n-long vector of ones.

For a vector a = (aj)j∈I and k ∈ R, ak := (akj )j∈I means element-wise exponentiation. For

scalar b and vector a = (aj)j∈I , b · a = (baj)j∈I is element-wise multiplication. The dot · is

sometimes suppressed.

For functions f : b→ c and g : a→ b, (f ◦g) : a→ c is a function composition. For functions

f, g : R → R, x ∈ R, f(x) is proportional to g(x), denoted by f(x) ∝ g(x), if there exists

a ∈ R++ such that f(x) = ag(x). For x ∈ R+, f : R+ → R+ and g : R+ → R++, f(x) = O (g(x))

means that there exist a, x0 ∈ R+ such that f(x) ≤ ag(x) for all x ≥ x0. g(x) = Ω(f(x)) means

the same thing. f(x) = o(g(x)) means that f(x)/g(x)→ 0 as x approaches some limit (typically

0 or ∞). E [.] (Ef [.]) is expectation, V [.] (Vf [.]) is variance (with respect to density f).

2. Homomorphic Encryption

Gentry (2009) was the first to design a (fully) homomorphic encryption scheme (Homomorphic-

Encryption.org). Since then a few HE schemes were proposed, including but not limited to: BGV

(Brakerski et al., 2011), BFV (Fan and Vercauteren, 2012), an NTRU-based (Lopez-Alt et al.,

2013), GSW Gentry et al. (2013), and the CKKS (also called homomorphic encryption for

2
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arithmetic of approximate numbers, HEAAN, Cheon et al. (2017)) schemes. See Albrecht et al.

(2018) for an overview. I use the CKKS scheme. Even though it gives only approximate results,

I choose it because (i) it performs well in statistical applications in terms of computation time

and precision (see Kim et al. (2018b), Kim et al. (2018a) for logit, and Jiang et al. (2018) for

neural networks applications); and (ii) it provides an efficient way of encoding a vector by the

batching technique (Cheon et al. (2017), see below). In the rest of this section, I describe the

CKKS scheme.

2.1. CKKS Scheme (HEAAN)

In this subsection, a non-technical overview of how CKKS works is given, followed by a formal

explanation.

2.1.1 Overview

Suppose we have the same application described in the Introduction (Figure 1). Specifically, we

have a vector of complex or real numbers we want to encrypt and send to the cloud to perform

computation on the encrypted vector. Then CKKS involves the following steps.

First, in what can be thought of as a preprocessing step, the vector is encoded. Encoding

maps the complex vector to a polynomial in a polynomial ring. The inverse of encoding is

decoding, which maps a polynomial into a complex vector. Encoding and decoding are homo-

morphisms between the complex vector space and the polynomial ring – hence the name of

HE. It is because of the homomorphism that computations can be performed on encrypted

data: adding (multiplying) two polynomials then decoding the result leads to the same result

as adding (multiplying) two complex vectors element-wise. Importantly, note that while ad-

dition/multiplication is enabled by HE, other operations, for e.g. multiplicative inverse (i.e.

division) or exponential function are not natively supported.

Second, the encoded vector, now a polynomial, is encrypted to what is called ciphertext,

which is a vector of polynomials. Encryption can be done with the public key, which is public

information. The inverse operation of encryption is decryption. Decryption is only possible

with the secret key, which is private information only accessible to the data owner. Therefore,

encryption provides data protection as long as the secret key is indeed secret and secure enough

to withstand attacks. CKKS uses polynomial rings because then successful attacks to break the

encryption need to solve the Ring Learning With Errors (RLWE) problem. RLWE is assumed

to be a hard problem, withstanding even “powerful attacks”. (Cheon et al., 2017).

Third, the encrypted polynomial is sent to the cloud, where the computation happens.

Homomorphic computations usually require the evaluation key, and switching key, which are

public information. Last, the cloud sends back the encrypted result, which is first decrypted

with the secret key, and then decoded. The decoded result is a vector of complex numbers.

3
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2.1.2 Notation

Rings, encoding, and probability distributions have a central role in CKKS. In the following,

formal descriptions of these based on Cheon et al. (2017) are given, and some examples are

provided.

Rings For q ∈ Z, let Zq := Z/qZ be the ring of integers modulo q. The congruence class

representatives are chosen to be the elements in Z ∩ (−q/2, q/2]. Let Zq[X] := (Z/qZ)[X]

be the ring of polynomials over the ring Zq. Elements of Zq[X] are polynomials of the form
∑D

j=0 ajX
j for some D ∈ N where aj ∈ Zq for j = 0, 1, . . . , D. Let Z[X] and R[X] be the ring of

polynomials over the ring Z and R, respectively. Elements of Z[X] and R[X] are polynomials of

the form
∑D

j=0 ajX
j for some D ∈ N where aj ∈ Z and aj ∈ R, respectively, for j = 0, 1, . . . , D.

For a power-of-2 N ∈ N, let Φ2N(X) be the (2N)-th cyclotomic polynomial, of degree N ,

which takes the form Φ2N(X) = XN +1. Let R := Z[X]/(Φ2N(X)) and Rq := Zq[X]/(Φ2N(X))

be the ring of polynomials Z[X] and Zq[X], respectively, modulo polynomial Φ2N(X). Polyno-

mial modulo is understood to be the remainder polynomial term after polynomial long division.

Elements of R and Rq are polynomials of the form
∑N−1

j=0 ajX
j where aj ∈ Z and aj ∈ Zq,

respectively, for j = 0, 1, . . . , N − 1. Let S := R[X]/(Φ2N(X)) be the ring of polynomials R[X]

modulo polynomial Φ2N(X). Elements of S are polynomials of the form
∑N−1

j=0 ajX
j where

aj ∈ R for j = 0, 1, . . . , N − 1.

Example 1 (Rings). Zq. Let a, b ∈ Zq. For q := 6, Z6 = {−26,−16, 06, 16, 26, 36}. The ring

operations are

• Addition: a+b := (a+b) mod q, e.g. −26+−16 = (−3) mod 6 = 36. The additive identity

is 0q, e.g. 06. The additive inverse is −a := (−a) mod q, e.g. −−26 = 2 mod 6 = 26.

• Multiplication: a · b := (a · b) mod q, e.g. −26 · −16 = 2 mod 6 = 26. The multiplicative

identity is 1q, e.g. 16.

Zq[X]. For a :=
∑Da

j=0 ajX
j ∈ Zq[X] and b :=

∑Db

j=0 bjX
j ∈ Zq[X], the ring operations are

• Addition: a+b :=
∑max{Da,Db}

j=0 (aj+bj)X
j, where aj+bj is addition as defined for Zq, and

aj = bi := 0q for j > Da, i > Db. E.g. a := −26 + 36X, b := −16 =⇒ a+ b = 36 + 36X.

The additive identity is 0q, e.g. 06. The additive inverse is −a :=
∑Da

j=0(−aj)Xj, where

−aj is as defined for Zq. E.g. a := −26 + 36X =⇒ −a = 26 + 36X.

• Multiplication: a · b :=
∑Da+Db

j=0 cjX
j for cj :=

∑j
i=0 ai · bj−i, where ai · bj−i is as multipli-

cation defined for Zq. E.g. a := −26 + 36X, b := −26 =⇒ a · b = 26 + 06X = 26.

Rq. For N := 2, Φ2N = X2 + 1. For a :=
∑Da

j=0 ajX
j ∈ Rq and b :=

∑Db

j=0 bjX
j ∈ Rq, with

Da, Db ≤ N − 1, the ring operations are

4
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• Addition: a+ b :=
(
∑max{Da,Db}

j=0 (aj + bj)X
j
)

mod (XN +1), where aj+ bj is addition as

defined for Zq, and aj = bi := 0q for j > Da, i > Db. E.g. a := −26 +36X, b := −16 =⇒
a + b = (36 + 36X) mod (X2 + 1) = 36 + 36X. The additive identity is 0q, e.g. 06. The

additive inverse is −a :=
(
∑Da

j=0(−aj)Xj
)

mod (XN + 1), where −aj is as defined for

Zq. E.g. a := −26+36X =⇒ −a = (26+36X) mod (X2+1). Note that addition cannot

lead to a larger degree, hence the (. mod (XN + 1))-operation may be dropped.

• Multiplication: a · b :=
(
∑Da+Db

j=0 cjX
j
)

mod (XN + 1), for cj :=
∑j

i=0 ai · bj−i, where

ai · bj−i is multiplication as defined for Zq. E.g. a := −26 +−16X, b := 26X =⇒ a · b =
(26X+−26X2) mod (X2+1) = [−26(X2+1)+(−−26)+26X] mod (X2+1) = 26+26X.

Z[X], R, R[X], and S behaves as Zq[X] and Rq, respectively, except that the polynomial coef-

ficients are integers and real numbers so addition, and multiplication acts accordingly.

Encoding/Decoding Fix a power-of-2 N ∈ N. Let Z∗
2N := {x ∈ Z2N : gcd(x, 2N) = 1} be the

set of elements in Z2N , the ring of integers modulo 2N , that are coprimes with 2N . Let T be a

subgroup of Z∗
2N such that Z∗

2N/T = {+−1}. It follows that |T | = N/2. T serves as the index set

of the complex vector to be encoded. Let H := {(zj)j∈Z∗
2N

: zj ∈ C, z−j = z̄j ∀j ∈ Z
∗
2N} ⊂ C

N

be the set of N -large complex vectors whose element indexed by (−j) is the complex conjugate

of its element indexed by j. Let ζ2N := exp(−πi/N) ∈ C for the imaginary unit i.

Decoding maps a polynomial m(X) ∈ R to a complex vector z := (zj)j∈T ∈ C
N/2 by

z = (π ◦ σ)(m). σ : R → C
N is defined as σ(m) := (m(ζj2N))j∈Z∗

2N
, the evaluation values

of the polynomial m(X) at j-th powers of ζ2N . π : H → C
N/2 sends the evaluation values

(m(ζj2N))j∈Z∗
2N

to the vector z = (zj)j∈T .

Encoding maps a complex vector z = (zj)j∈T ∈ C
N/2 to a polynomial in m(X) ∈ R by

σ−1
(
⌊π−1(z)⌉σ(R)

)
, where ⌊.⌉σ(R) means rounding to an element in σ(R). Where σ−1 : σ(R)→

R is the inverse of σ, and π−1 : CN/2 → H, inverse of π, is given by (π−1(z))j = zj if j ∈ T ,

z̄−j otherwise, for j ∈ Z
∗
2N . Encoding is almost the inverse of decoding except the rounding

step. Because of the precision loss in rounding, z is usually scaled by a power-of-2 ∆ > 20. The

encoding/decoding algorithms are isometric homomorphisms between metric spaces (S, ||.||can∞ )

and (CN/2, ||.||∞) for the norms ||(zj)j∈T ||∞ := maxj∈T |zj| and ||a||can∞ := ||σ(a)||∞ for a ∈ S.

Example 2 (Encoding, Cheon et al. (2017) p. 418). Let N := 4, so Z2N = {−38,−28, . . . , 48}
and Z

∗
2N = {−3,−1, 1, 3} (for simplicity, I drop the ā8 notation). Set T := {1, 3}, so we

have the vector z = (z1, z3). Let z = (z1, z3) := (3 + 4i, 2 − i) ∈ C
2, and the scale factor

∆ := 64. Then π−1(z) = (2 + i, 3 − 4i, 3 + 4i, 2 − i) ∈ C
4. Using σ−1, we fit a polynomial

m̂(X) such that (m̂(ζj2N))j∈Z∗
2N

= ∆ · z. In practice, the polynomial-fitting can be done with

the Lagrange-polynomial or saturated ordinary least squares. The latter scales better with N

exploiting orthogonality in the design matrix. The fitted polynomial, suppressing some decimals,

is 160−45.2548X−159.9999X2−90.5097X3. Performing coefficient-wise rounding, the output

5
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of the encoding algorithm is m(X) = 160− 45X − 160X2 − 91X3. At ζ12N , ζ
3
2N , the polynomial

∆−1m(X) has evaluation values (3.0082 + 4.0026i, 1.9918 − 0.9974i) ≈ z, which is the output

of the decoding algorithm.

Probability Distributions For σ ∈ R>0, let DG(σ2) be the univariate discrete Gaussian

distribution of mean 0 and variance σ2 (see Karney (2016) for description and sampling). For

positive integer H ≤ N , let HWT (H) := {x ∈ {−1, 0, 1}N :
∑N

i=1 ✶xi 6=0 = H} be the set of

N -large vectors with entries in {−1, 0, 1} with exactly H non-zero entries. For ρ ∈ [0, 1], let

ZO(ρ) be a distribution on vectors x ∈ {−1, 0, 1}N such that entries xi of x are independently

and identically distributed with P (xi = −1) = P (xi = 1) = ρ/2 and P (xi = 0) = 1 − ρ for

i = 1, 2, . . . , N . y ← D denotes sampling a polynomial y (by sampling its coefficient vector)

from D where D can be either (i) a distribution like DG(σ2) or ZO(ρ); or (ii) a finite set like

HWT (H) or Rq. When D is a set,← denotes sampling uniformly from D. When D is DG(σ2),

each entry of the coefficient vector of the polynomial is sampled independently from DG(σ2).

2.1.3 Complete Scheme

The CKKS scheme (Cheon et al. (2017), Cheon et al. (2018)) is uniquely characterised by

six parameters: N, λ, L, P,H, σ. The power-of-2 N governs the degree of the polynomials as

above. λ ∈ R is the security level, meaning that every known attack against the encryption

scheme takes Ω(2λ) bit operations (Cheon et al., 2017). L ∈ N, the initial level of ciphertexts, is

governed by precision (∆) and the multiplicative depth of the algorithm (D(C)Mult, see below).

Specifically, L ≥ (D(C)Mult + 1) log2 ∆ must be to obtain log2 ∆ bits of precision. Define the

sequence qℓ := pℓq0 for p, q0 ∈ N and the level ℓ ∈ N ∩ (0, L] of ciphertexts. P ∈ N is an

auxiliary parameter.

The parameters are related by the RLWE security estimate N ≥ λ+110
7.2

log2(PqL), see Cheon

et al. (2017). Following Kim et al. (2018a), I set q0 := 1, p := 2, P := qL, therefore

N ≥ λ+ 110

7.2
· 2L ⇐⇒ 7.2N

2L
− 110 ≥ λ. (1)

This has severe implications. When we increase the complexity of the homomorphic algorithm

(larger D(C)Mult) or need more precision (larger ∆), L increases. If the increase in L is not offset

by an increase in N , the encryption security λ decreases. That is, more complex or precise

algorithms require larger N and thus longer computation time to guarantee the same level of

security. As in Cheon et al. (2017), I set H := 64, and, following common practice (Albrecht

et al., 2018), σ := 8/
√
2π.

The complete scheme consists of the following algorithms.

• KeyGen() (key generation). For parameters N, λ, L, P,H, σ as discussed above:

– Sample polynomials s ← HWT (H), a ← RqL and e ← DG(σ2). Set the secret key

sk := (1, s) ∈ R2
qL

, the public key pk := (b, a) ∈ R2
qL

with b := −as+ e (mod qL).

6
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– Sample polynomials a′ ← RPqL , e
′ ← DG(σ2). Set the evaluation key evk := (b′, a′) ∈

R2
PqL

with b′ := −a′s+ e′ + Ps2 (mod PqL).

Output the keys (sk, pk, evk).

• KSGensk(s
′) (switching key generation). For secret key sk = (1, s) ∈ R2

qL
and s′ ∈ R,

sample polynomials a′ ← RPqL , e
′ ← DG(σ2). Output the switching key swk := (b′, a′) ∈

R2
PqL

with b′ := −a′s+ e′ + Ps′ (mod PqL).

• Ecd∆(z) (encoding). For z = (zj)j∈T ∈ C
N/2 and scale ∆, output σ−1

(
⌊∆π−1(z)⌉σ(R)

)
,

the encoding of z.

• Dcd∆(m) (decoding). For polynomial m(X) ∈ R, output ∆−1(π ◦ σ)(m) ∈ C
N/2, the

decoding of m(X).

• Encpk(m) (encryption). For polynomial m(X) ∈ R and public key pk = (b, a) ∈ R2
qL

,

sample polynomials v ← ZO(0.5) and e0, e1 ← DG(σ2). Output the ciphertext c :=

(c0, c1) ∈ R2
qL

, the encryption of m, with c0 := vb +m + e0 (mod qL) and c1 := va + e1

(mod qL).

• Decsk(c) (decryption). For ciphertext c = (c0, c1) ∈ R2
qℓ

at level ℓ and secret key sk =

(1, s) ∈ R2
qL

, output m := c0 + c1s (mod qℓ), the decryption of c.

• Add(c1, c2) (addition). For two ciphertexts c1, c2 ∈ R2
qℓ

, output c := c1 + c2 (mod qℓ) ∈
R2

qℓ
the homomorphic sum of c1 and c2.

• CAdd(c, a) (addition with constant). For ciphertext c ∈ R2
qℓ

, and a constant a ∈ R,

output c := c+ (a, 0) (mod qℓ) ∈ R2
qℓ

the homomorphic sum of c and a.

• Multevk(c1, c2) (multiplication). For two ciphertexts c1 = (b1, a1) ∈ R2
qℓ
, c2 = (b2, a2) ∈

R2
qℓ

and the evaluation key evk, set (d0, d1, d2) := (b1b2, a1b2+ a2b1, a1a2) (mod qℓ) ∈ R3
qℓ

.

Output c := (d0, d1)+ ⌊P−1d2 · evk⌉ (mod qℓ) ∈ R2
qℓ

, the homomorphic product of c1 and

c2.

• CMult(c, a) (multiplication with constant). For ciphertext c ∈ R2
qℓ

, and a constant a ∈ R,

output c := a · c (mod qℓ) ∈ R2
qℓ

, the homomorphic product of c and a.

• RSℓ→ℓ′(c) (rescaling). For ciphertext c ∈ R2
qℓ

at level ℓ and the new level ℓ′ ∈ N ∩ (0, ℓ],

output c′ :=
⌊ qℓ′

qℓ
c
⌉
(mod qℓ′) ∈ R2

qℓ′
, the rescaled c. Subscript ℓ → ℓ′ is omitted for

ℓ′ = ℓ− log2 ∆.

• ModDown(c, qℓ′) (modulus reduction). For ciphertext c = (c0, c1) ∈ R2
qℓ

at level ℓ and new

modulus qℓ′ with ℓ′ ≤ ℓ, output c′ := (c0 mod qℓ′ , c1 mod qℓ′) ∈ R2
qℓ′

.

• KSswk(c
′) (key switching). For ciphertext c′ = (c′0, c

′
1) ∈ R2

qℓ
encrypting m ∈ R under

secret key sk′ = (1, s′) ∈ R2
qL

and swk = KSGensk(s
′) output c := (c′0, 0) + ⌊P−1c′1 · swk⌉

(mod qℓ) ∈ R2
qℓ

encrypting m under secret key sk = (1, s) ∈ R2
qL

.

• Perm
i→j
swki,j

(c) (permutation). For ciphertext c = (c0, c1) ∈ R2
qℓ

, encrypting (the encoding

of) (zj)j∈T under secret key sk(1, s) ∈ R2
qL

, indices i, j ∈ T , switching key swki,j =

7
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KSGen(κk(sk)) where κk : m(X) 7→ m(Xk) (mod (XN + 1)) with k := j−1i (mod 2N),
2 κk(sk) := κk(s), let c′ := (κk(c0), κk(c1)) ∈ R2

qℓ
. Output KSswki,j(c

′) ∈ R2
qℓ

, encrypting

(the encoding of) (ẑj)j∈T under secret key sk = (1, s) ∈ R2
qL

such that ẑj = zi and

ẑj′ = zj′ , ∀j′ ∈ T : j′ 6= j.

• Sum(swki,j)i,j∈T
(c) (vector-summation) For ciphertext c ∈ R2

qℓ
, encrypting (the encoding

of) (zj)j∈T , and switching keys (swki,j)i,j∈T where swki,j := KSGen(κk(sk)) with k := j−1i

(mod 2N), output cs ∈ R2
qℓ

, encrypting (the encoding of) (ẑj)j∈T , the first element of

which is
∑

j∈T zj. cs is computed by Algorithm 4.

Example 3 illustrates the algorithms of the scheme. Some remarks are due: (i) polynomials

referred to as constants because they are not encrypted (so anyone can access the associated

data via Dcd), not because they are of the form a(X) = a0 for some scalar a0; and (ii) D(C)Mult,

the multiplicative depth of some algorithm (any composition of the above algorithms), is the

largest number of multiplications (Mult or CMult) performed on the ciphertext involved in the

most multiplications. E.g. if there are three ciphertexts c1, c2, c3 in an algorithm – each of them

is at level L before any computation is performed on them – and they are involved in 23, 3, 26

multiplications (Mult or CMult) followed by rescaling (RS), respectively, then D(C)Mult = 26.

Example 3 (CKKS). Let N := 4 so that Z2N = {−3,−2,−1, 0, 1, 2, 3, 4}, Z∗
2N = {−3,−1, 1, 3},

and set T := {1, 3}. Let zA = (zA,1, zA,3) := (3+4i, 2−i) ∈ C
2, zB = (zB,1, zB,3) := (2, 10) ∈ C

2,

and (sk, pk, evk) := KeyGen(). Then CKKS exhibits the following behavior.

• Encoding/Decoding. Dcd∆(Ecd∆(zA)) ≈ zA.

• Encryption/Decryption. Dcd∆(Decsk(Encpk(Ecd∆(zA)))) ≈ zA.

• Addition. Let cA := Encpk(Ecd∆(zA)), cB := Encpk(Ecd∆(zB)), and cadd := Add(cA, cB).

Then Dcd∆(Decsk(cadd)) ≈ zA + zB = (5 + 4i, 12− i).
• Addition with constant. Let cA := Encpk(Ecd∆(zA)), and a := Ecd∆((100, 10)). Then

Dcd∆(Decsk(CAdd(cA, a))) ≈ (103 + 4i, 12− i).
• Multiplication. Let cA := Encpk(Ecd∆(zA)), cB := Encpk(Ecd∆(zB)), and let cmult :=

Multevk(cA, cB). Then Dcd∆2(Decsk(cmult)) ≈ zA · zB = (6 + 8i, 20− 10i).

• Multiplication with constant. Let cA := Encpk(Ecd∆(zA)), and a := Ecd∆((100, 10)). Then

Dcd∆2(Decsk(CMult(cA, a)) ≈ (300 + 400i, 20− 10i).

• Rescaling. RS, used after multiplications, plays an important role in dynamically managing

the size of ciphertexts. For more details see Cheon et al. (2017).

• Modulus reduction. ModDown makes it possible to add ciphertexts with different modulus

by reducing the modulus of the ciphertext with higher modulus. For more details see Cheon

et al. (2017).

2j−1 ∈ Z
∗

2N is well-defined because Z
∗

2N is a multiplicative group and T is its subgroup.

8
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• Permutation. Let cA := Encpk(Ecd∆(zA)) be the encryption of zA = (zA,1, zA,3) un-

der secret key sk. By applying the permutation algorithm to cA we can get a cipher-

text Perm
i→j
swki,j

(cA) which is the encryption of z′
A = (z′A,1, z

′
A,3), where z′A,j = zA,i, un-

der secret key sk. That is, we send element i to element j. For instance, let i := 1

and j := 3. Then Dcd∆(Decsk(Perm1→3
swk1,3

(cA))) ≈ (3 + 4i, 3 + 4i). Another example is

Dcd∆(Decsk(Perm3→1
swk3,1

(cA))) ≈ (2− i, 2− i).
• Vector-summation. Let c := Encpk(Ecd∆(z)) be the encryption of z = (z1, z3) under secret

key sk. Then for cs := Sum(swki,j)i,j∈T
(c), the first element of Dcd∆(Decsk(cs)) is approxi-

mately z1 + z3.

Visual illustration. Let f be some composition of addition and multiplication, and Eval
f
evk be the

same composition of Add,CAdd and Multevk,CMult. Then Figure 2 depicts that we can obtain

f(zA, zB) with homomorphic encryption. That is, Figure 2 is a commutative diagram.

Figure 2: Operations with Homomorphic Encryption

zA

zB

f(zA, zB)

cB

cA Result
Eval

f
evk

Cloud Computing

Encpk ◦ Ecd

Encpk ◦ Ecd
Dcd ◦ Decsk

Notes: in shaded nodes data are encrypted.

2.2. Applications in Statistics

HE enables statistical queries without sacrificing privacy. However, it suffers from a major

drawback beside large computational time. Namely, homomorphic encryption schemes only

support addition (Add,CAdd) and multiplication (Mult,CMult) natively. This can be resolved

by bit-wise encryption, but such procedures are much slower (Song et al., 2019).3 Hence special

algorithms need to be designed, which led to active research since the breakthrough of Gentry

(2009).

Yang et al. (2019) provide a comprehensive survey of HE applications, ranging from elemen-

tary operations on sets and matrices to more complex algorithms in statistics, machine learning

and computer science. Below I list several examples from the survey (and additional works) on

statistics and machine learning.

3Simply put, the intuition is that today’s (non-quantum) computers represent a number with bits, and each

operation can be described by logical gates which boil down to addition (OR) or multiplication (AND).

9
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HE has been used for hypothesis testing. Lu et al. (2015) propose a way for computing the

χ2 statistics for testing independence between nominal variables, safely aggregating data from

multiple clients. Poon et al. (2018) give an algorithm for Fisher’s exact test. However, for both

tests, the last step, division, is performed by the client. On the contrary, Zhang et al. (2015) use

an encrypted look-up table procedure to “perform division” on encrypted integers to compute

the χ2 statistics.

Linear and logistic regressions are more complex HE applications because they involve ma-

trix inversion or optimisation. Optimisation is typically managed by iterative gradient methods,

mostly with low number of iterations. For example, Esperança et al. (2017) estimate a linear

(ridge) regression with an accelerated gradient method using the BFV scheme (Fan and Ver-

cauteren, 2012). Logistic regression received significant attention, partly thanks to the iDash

2017 competition.4 Kim et al. (2018a), in an improved version of Kim et al. (2018b), use the

CKKS scheme for logistic regression. In both works, the exponential function of the logit func-

tion is approximated with least squares by a polynomial. On the other hand, Yoo et al. (2019)

use bit-wise encryption to compute (more) exact exponential function.

Regarding non-parametric methods, HE appears to have been used mostly for classification.

Graepel et al. (2012) propose methods for encrypted classification, but the encoding routine is

not as efficient as that of CKKS, and it is the client’s task to assign the classification label from

some score in the end. Bost et al. (2015) provide a framework for classification including Support

Vector Machines (SVM), Naïve Bayes (NB) and Decision Tree (DT). They design algorithms

to compare (≤,≥) encrypted data and support operations like argmax to homomorphically

assign the classification label. However, comparisons require communication between the client

and the server, and their encoding/encryption method are not as efficient as that of CKKS.

Khedr et al. (2015) implement the NB classifier with the GSW Gentry et al. (2013) scheme.

Bian et al. (2019), using the Paillier scheme (Paillier, 1999) with bit-wise encryption, apply the

NB classifier to e-mail spam filtering.

Alabdulkarim et al. (2019) fit a DT where data are hold by multiple parties and encrypted

summary statistics are shared between them. The fitting happens simultaneously and iteratively

wherein each round parties share summary statistics. Nonetheless, the fitting itself takes place

in the clean (i.e. on non-encrypted data).

González-Serrano et al. (2018) fit SVM but operations not natively supported by HE are

carried out by a trusted third party. Rahulamathavn et al. (2014) train SVM using only poly-

nomial kernels to avoid exponential functions. Park et al. (2020) use CKKS to fit SVM with

polynomial and radial basis function kernel, which involves the exponential function.

4http://www.humangenomeprivacy.org/2017/
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3. Kernel Density Estimation

In this section, Kernel Density Estimation (KDE) and its difficulties when applied with HE are

discussed. Next, I devise a KDE method designed for HE, called HE-KDE. It consists of two

parts: the estimator on non-encrypted data, and algorithms enabling the use of the estimator

on encrypted data. Last, the properties of HE-KDE on non-encrypted data are derived and

optimal parameter choices are discussed.

3.1. Description

We observe an n-large sample x := (xi)i∈[n] ∈ R
n, [n] := 1, 2, . . . , n, with elements xi inde-

pendently and identically distributed (i.i.d.) deviates of the real-valued random variable X,

which admits a density f : R → R+. Throughout, I assume that f has bounded support

S := [a, b] ⊂ R, a < b. Equivalently, f(x) = 0 if x /∈ S. The objective of nonparametric

density estimation is to estimate f from the sample x without imposing a functional form

on f . KDE is a nonparametric density estimator that uses kernel functions. It takes the form

f̂(x) := 1
nh

∑

i∈[n]K
(
x−xi

h

)
for bandwidth h ∈ R++ and kernel function K : R → R+. K is a

weighting function which puts smaller weights on distant observations (as |x − xi| → ∞, the

weight K((x − xi)/h) → 0). The bandwidth h governs how sensitive the down-weighting is to

the difference x − xi (as h → 0, even the distance between closest observations are enlarged,

causing K((x− xi)/h)→ 0). Large sensitivity (small h) implies rough f̂ (large variance, small

bias), while small sensitivity (large h) implies smooth f̂ (small variance, large bias). One chooses

the bandwidth to balance variance and bias.

3.2. HE Difficulties

For non-encrypted KDE, the choice of kernel is generally not very important (Pagan and Ullah,

1999). However, the kernel choice becomes intricate with HE. To see why, note that typically

used kernels either have (i) bounded support (e.g. K(u) = 1/2 if u ∈ [+−1], 0 otherwise); or (ii)

unbounded support and a nonlinear form to achieve down-weighting, (e.g. the Gaussian kernel

K(u) = (2π)−1/2e−u2/2, Silverman kernel K(u) = 0.5e−|u|/
√
2 · sin

(
|u|√
2
+ π

4

)

for sine function

sin, base of natural logarithm e and mathematical constant π; see Pagan and Ullah (1999)

for further examples). Recall that HE does not natively support comparison (≤,≥), which

is needed for bounded support kernels, nor non-linear functions (exp, sin), which is needed for

non-bounded support kernels. Therefore, the main difficulty of KDE with HE is finding a kernel

which can be evaluated given the limited number of available operations.

To resolve this issue, one could encode/encrypt the numbers bit-wise similarly to Song et al.

(2019), Yoo et al. (2019). This requires as many ciphertexts as many bits there are. Because

this is not efficient, I take a different approach which relies only on addition and multiplication.

11
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3.3. HE-KDE

To alleviate the kernel issue with HE, I devise a polynomial which behaves like a kernel locally.

Definition 1 (Local Approximate Kernel). K̃d,τ (u) := cd,τ

(

γ +
∑d

k=1wk(1 + u2 − τ)k
)

, for

shift τ ∈ R≥1, even degree d ∈ N, normalising constant cd,τ , the Euler constant γ, and weights

wk :=
(−1)k+1

k
+ (−1)kζ(k + 1) ∈ [−1, 1] where ζ(x) =

∑∞
j=1

1
jx

is the Riemann zeta function.

The motivation for K̃d,τ is the kernel u 7→ π
1+u2 which has unbounded support. The prob-

lematic function for HE in this kernel is x 7→ 1/x. Muqattash and Yahdi (2006) points out that

the digamma function can be approximated by ψ(x) ≈ ln(x)− 1/x. Starting from here, I write

1/x ≈ ln(x)− ψ(x) and use the degree-d Taylor-approximations of ln(x) and ψ(x) with a shift

τ . 5

What is the role of τ? How is cd,τ computed? Figure 3 depicts K̃d,τ for various degrees and

shifts. On one hand, by increasing τ , we can increase the region where K̃d,τ can perform “sensible

weighting”. Let l1(d, τ) := inf{u ∈ R+ : K̃d,τ (u) < K̃d,τ (u+ ε), ε > 0} be the infimum positive

value where K̃d,τ starts to increase. Throughout, I fix ε := 10−2. l1, numerically approximated,

is also depicted in Figure 3. By symmetry, the weights induced by K̃d,τ are increasing in |u|
for u /∈ [+−l1(d, τ)], hence when applied to KDE, observations with large |x − xi| would get

large weights. This is clearly undesirable, so we need to make sure that u ∈ [+−l1(d, τ)], where

[+−l1(d, τ)] is the “sensible weighting” region. Given l1, cd,τ is computed numerically such that
∫ l1(d,τ)

−l1(d,τ)
K̃d,τ (u)du = 1, from the unnormalised version of K̃d,τ . On the other hand, by increasing

τ we also increase the middle, non-zero region of K̃d,τ , decreasing the region where K̃d,τ can

perform “effective down-weighting”. This prevents the kernel to attribute small weight to a

dissimilar observation when applied to KDE. Let l2(d, τ) := inf{u ∈ R+ : K̃d,τ (u) < δ, δ > 0}
be the infimum positive value where K̃d,τ becomes near-zero for small δ. Throughout, I fix

δ := 10−3.6 The “effective down-weighting” region is {u ∈ R : |u| ≥ l2(d, τ)}. l2, numerically

approximated, is also depicted in Figure 3. To compare the trade-off between the “sensible

weighting” and “effective down-weighting” region, the dependence of l1, l2 on τ is illustrated

in Figure 4. Remarkably, we have l1(d, τ) ≈
√
τ from the first column, so that the “sensible

weighting” region is O (
√
τ). Moreover, l2 increases slower than

√
τ in τ for all degree d, so that

the the “effective down-weighting” region decreases as o (
√
τ).

What is the role of d? Figures 3 and 4 illustrate the effect of d on l1, l2. While l1 does not

change with d, l2 can be decreased by increasing d, irrespective of τ . That is, the “effective

down-weighting” region can be increased by increasing d. As a consequence, by increasing τ or

5Of course, I could use the Taylor-approximation of x 7→ 1/x right away, which is x 7→ ∑
∞

j=0
(−1)k(x − 1)k

around 1. In fact, wk oscillates in [-1, 1], similarly to (−1)k. Numerical analysis suggests, however, that K̃d,τ

has slightly better properties: the minimum of the kernel tends to be closer to zero for the digamma approach.
6If the Taylor-approximation of x 7→ 1/x is used directly, δ needs to be higher to keep l2 unchanged.
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d we can improve the properties of the kernel as reflected by the third and fourth columns of

Figure 4.

Figure 3: Local Approximate Kernel
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Figure 4: Effect of Parameters on Local Approximate Kernel Properties
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Having constructed the HE-compatible kernel, we can turn to the HE-compatible kernel

density estimator, HE-KDE. Importantly, the bandwidth h must ensure that the input to the

kernel x−xi

h
∈ [+−l1(d, τ)], where l1(d, τ) ≈

√
τ , to provide sensible weighting. If h ≥ b−a√

τ
, then

x−xi

h
∈ [+−
√
τ ] when x, xi ∈ S = [a, b]. As the support of f is S, xi ∈ S for all i ∈ [n].

Definition 2 (HE-KDE). f̃d,τ (x) :=
1
nh

∑

i∈[n] K̃d,τ

(
x−xi

h

)
for i.i.d. sample x = (xi)i∈[n] ∈ Sn

from the density f with support S = [a, b], query point x ∈ S, bandwidth h ≥ b−a√
τ
.

Having constructed the HE-compatible estimator f̃d,τ on non-encrypted data, I discuss its

implementation on encrypted data using the CKKS scheme. Three algorithms are designed,

corresponding to the three steps in Figure 1. First, the client chooses encryption and HE-KDE

parameters, then encrypts the sample x and the query point x, and sends them to the server

with additional information needed for computation (Algorithm 1). Second, the cloud computes

f̃d,τ (x) homomorphically on the encrypted data and sends the encrypted result to the client

(Algorithm 2). Third, the client decrypts the result and hence obtains f̃d,τ (x) (Algorithm 3).

Note that the encrypted data are x and x; none of n, h, d, τ, cd,τ , (wk)k∈[d] are encrypted.

Because τ enters f̃d,τ only linearly, except cd,τ , τ may be encrypted if one designs an encrypted

look-up algorithm to access cd,τ , similarly to Zhang et al. (2015). Encrypting τ could prevent

the server to infer properties of the data from h – since the optimal bandwidth h, presented in

the next section, might depend on data properties.

Algorithm 1 HE-KDE (CKKS) Step 1: Client encrypts data

input: sample x = (xi)i∈[n] ∈ Sn, n = N/2 ≥ H/2 for power-of-2 N , encryption parameter H of

HWT (H); query point x ∈ S; minimum security requirement λ0

output: encrypted data, evaluation and switching keys, HE-KDE parameters

1: set degree d and shift τ based on n ⊲ HE-KDE parameters

2: set bandwidth h based on d, τ, n, S

3: set scale ∆ based on required precision and S ⊲ encryption parameters

4: set initial level L based on d, τ,∆, λ0

5: generate keys (sk, pk, evk) := KeyGen(); keep sk in secret

6: generate set of switching keys (swki,j)i,j∈T where swki,j := KSGen(κk(sk)) with k = j−1i (mod 2N)

for all i, j ∈ T

7: csample := Encpk(Ecd∆(x)) ⊲ encrypt data

8: cquery := Encpk(Ecd∆(−x1n)) ⊲ encrypt (−1n) times query point

9: return (csample, cquery, evk, (swki,j)i,j∈T ,∆, n, h, d, τ, cd,τ )

14



Máté Kormos MPhil Thesis

Algorithm 2 HE-KDE (CKKS) Step 2: Cloud computes estimator

input: output of Algorithm 1

output: encryption of HE-KDE estimator f̃d,τ (x)

1: τ̌ := Ecd∆((1− τ)1n) ⊲ encode (transformed) parameters

2: γ̌ := Ecd∆((nh)
−1cd,τγ1n)

3: w̌k := Ecd∆((nh)
−1cd,τwk1n) for k ∈ [d]

4: ȟ := Ecd∆(h
−11n)

5: c := RS(CMult(Add(csample, cquery), ȟ)) ⊲ input to K̃d,τ :
x1n−x

h =: u

6: c := RS(Multevk(c, c)) ⊲ computing K̃d,τ : u
2

7: c := CAdd(c, τ̌) ⊲ computing K̃d,τ : 1n − τ1n + u2 =: y

8: cpower := c

9: cterm := RS(CMult(cpower, w̌1)) ⊲ computing (nh)−1K̃d,τ : (nh)
−1cd,τw1y

1

10: cresult := cterm

11: for k ∈ {2, 3, . . . , d} do

12: cpower := RS(Multevk(cpower, c)) ⊲ computing (nh)−1K̃d,τ : yk

13: cterm := RS(CMult(cpower, w̌k)) ⊲ computing (nh)−1K̃d,τ : (nh)
−1cd,τwky

k

14: cresult := ModDown(cresult,modulus of cterm) ⊲ decrease modulus for addition:

15: cresult := Add(cresult, cterm) ⊲ computing (nh)−1K̃d,τ :
∑k

j=1(nh)
−1cd,τwjy

j

16: cresult := CAdd(cresult, γ̌) ⊲ computing (nh)−1K̃d,τ :

(nh)−1cd,τ

(

γ +
∑k

j=1wjy
j
)

=
(

(nh)−1K̃d,τ

(
x−xi
h

))

i∈[n]
17: cresult := Sum(swki,j)i,j∈T

(cresult) ⊲ computing f̃d,τ : (nh)
−1
∑

i∈[n] K̃d,τ

(
x−xi
h

)

18: return cresult

Algorithm 3 HE-KDE (CKKS) Step 3: Client decrypts estimator

input: output of Algorithm 2; secret key sk

output: HE-KDE estimator f̃d,τ (x)

1: z := Dcd∆(Decsk(cresult)) ∈ C
n ⊲ decrypt then decode result

2: zr := ℜ(z) ∈ R
n, where ℜ(z) are the real parts of z ⊲ remove imaginary noise due to encryption

3: set f̃d,τ (x) to first element of zr ⊲ other elements are noise produced by Sum

4: return f̃d,τ (x)

Proposition 1 (Multiplicative Depth of Algorithm 2). The multiplicative depth (D(C)Mult) of

Algorithm 2 is d+ 2, where d is the kernel degree in Definition 1.

Proof. Appendix A.1.

3.4. HE-KDE Properties

In this section, I analyse the properties of HE-KDE on non-encrypted data. Since a function

f : R → R is a density if and only if f(x) ≥ 0 for all x ∈ R and
∫

R
f(x)dx = 1, it is desirable
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that a density estimator exhibits the same properties. The following proposition states that

HE-KDE is always non-negative, but it need not integrate to one on S, hence it potentially

induces a defective cumulative distribution function with limx→b

∫ x

a
f̃d,τ (t)dt ≤ 1.

Proposition 2 (Bounds). For all τ ∈ R≥1, for all even d ∈ N, for all S = [a, b] ⊂ R, we have

(i) f̃d,τ (x) ≥ 0 for all x ∈ S, and

(ii)
∫

S
f̃d,τ (x)dx ≤ 1.

Proof. Appendix A.2.

Pointwise variance and bias, and the Mean Integrated Square Error (MISE) are usual prop-

erties of interest for KDE. MISE(f̂) for an estimator f̂ of density f is defined as MISE(f̂) :=
∫

R
Ef

[

(f̂(x)− f(x))2
]

dx =
∫

R

(

Vf

[

f̂(x)
]

+❇✐❛sf (f̂(x))
2
)

dx, for❇✐❛sf (f̂(x)) := Ef

[

f̂(x)
]

−
f(x). The smaller is MISE, the closer is the estimator f̂ to the estimand f . Proposition 3 asserts

that these properties are similar to that of KDE on non-encrypted data, using usual kernels.

The integrals I1, I2 of the variance and bias, plotted in Figure 11, play important roles in the

rest of this section.

Proposition 3 (MISE). Assume that f is twice continuously differentiable on R, and that

τ ∈ R≥1, and even number d ∈ N are such that K̃d,τ (z)
2 <∞ ∀z ∈ [+−

√
τ ]. Then the pointwise

variance and bias, with respect to f , for all x ∈ S satisfy

(i) Vf

[

f̃d,τ (x)
]

≤ V (x, n, h, d, τ) where V (x, n, h, d, τ) ≈ f(x)
nh
I1(d, τ) for n large and h small,

with I1(d, τ) :=
∫ √

τ

−√
τ
K̃d,τ (z)

2dz, and

(ii) ❇✐❛sf (f̃d,τ (x)) =
h2f ′′(x)

2
I2(d, τ) + o(h2) for h small, where I2(d, τ) :=

∫ √
τ

−√
τ
z2K̃d,τ (z)dz.

Further assume that there exists βf <∞ such that
∫

S
f ′′(x−β)2dx ≤ βf for all β ∈ R uniformly.

Then the mean integrated square error (MISE) satisfies

(iii) MISE(f̃d,τ ) ≤ Md,τ (h) := h1(d,τ)
nh

+ h4h2(d, τ) where h1(d, τ) := I1(d, τ) and h2(d, τ) :=

I2(d, τ)
2 βf

3
.

Proof. Appendix A.3.

In non-encrypted KDE, the bandwidth h is chosen to minimise the MISE bound, Md,τ ,

achieved by setting h proportional to n−1/5, which balances the variance and bias terms

in MISE (Pagan and Ullah, 1999). Hence MISE(h)|h∝n−1/5 vanishes for large sample size as

MISE(h)|h∝n−1/5 = O
(
n−4/5

)
.

HE-KDE is different. Proposition 4 characterises the optimal bandwidth and MISE-bound

for HE-KDE. The non-encrypted rate h ∝ n−1/5 need not be a feasible solution. It is because h is

subject to h ≥ b−a√
τ

to make sure that the input to the HE kernel K̃d,τ ,
x−xi

h
, falls in the “sensible
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weighting” region [+−
√
τ ] for all x ∈ S, for all i ∈ [n]. For fixed d and τ , an increasing sample size

n inevitably leads to a binding constraint h = b−a√
τ
= h∗bind(d, τ), therefore, Md,τ (h

∗(d, τ, n)) =

Md,τ (h
∗
bind(d, τ)). However, Md,τ (h

∗
bind(d, τ)) does not vanish as the sample size increases, unlike

O
(
n−4/5

)
for non-encrypted KDE. The non-vanishing MISE-term, (b−a)4

τ2
h2(d, τ), can be quite

large for large support of f , S = [a, b], and non-smooth densities (h2 is increasing in βf ). In

the next section, using numerical methods, I show that this issue can be resolved by choosing

(d, τ) appropriately.

Proposition 4 (Optimal Bandwidth). Let h∗(d, τ, n) be a solution to the program

min
h∈R++

Md,τ (h) subject to h ≥ b− a√
τ
.

Then, given a, b, n, d, τ , the solution h∗(d, τ, n) exists, is unique, and satisfies

h∗(d, τ, n) =







h∗bind(τ) :=
b−a√

τ
if b−a√

τ
≥
(

h1(d,τ)
4h2(d,τ)n

)1/5

h∗nonbind(d, τ) :=
(

h1(d,τ)
4h2(d,τ)n

)1/5

otherwise

Md,τ (h
∗
bind(τ)) =

√
τh1(d, τ)

n(b− a) +
(b− a)4
τ 2

h2(d, τ) ≥

Md,τ (h
∗
nonbind(d, τ)) =

(
27h2(d, τ)h1(d, τ)

4n−4
)1/5

.

Proof. Appendix A.4

3.5. Choosing Parameters: Statistical versus Encryption Optimality

How to choose degree d and shift τ? The choice induces a trade-off between good statistical

and encryption properties of HE-KDE. First, choices that lead to good statistical properties are

discussed in this subsection. Second, these choices are shown to exhibit unacceptable encryption

properties, and a solution balancing between statistical and encryption properties is designed.

In either case, I focus on choices that minimise the MISE-bound. Analytic solutions to

minimising Md,τ (h
∗(d, τ, n)) with respect to (d, τ) can depend on, and only on, the sample size

n, the support S, and smoothness βf . As a heurestic method, I only consider sequences dn, τn

of the sample size n that ensure the convergence of MISE-bound as n → ∞. Heurestics are

used because analytical or numerical solutions are non-existent or intractable. I choose dn, τn

so that Md,τ (h
∗
bind(τ)) is minimised. This further simplifies the analysis, and is a conservative

choice in that Md,τ (h
∗
bind(τ)) ≥ Md,τ (h

∗
nonbind(d, τ)) for all choices of τ ∈ R≥1 and even d ∈

N. Thus, Mdn,τn(h
∗
bind(τn)) → 0 implies Mdn,τn(h

∗
nonbind(dn, τn)) → 0 as n → ∞, therefore

Mdn,τn(h
∗(dn, τn, n))→ 0 as n→∞.

3.5.1 Statistical Optimality

When the constraint is binding, h∗bind(τ) = b−a√
τ
. This suggests setting τn := n2/5, so that

h∗bind(τn) ∝ n−1/5 similarly to the non-encrypted KDE case. Then by Proposition 4 we have
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Md,τn(h
∗
bind(τn)) =

h1(d,τn)

n4/5(b−a)
+ (b−a)4

n4/5 h2(d, τn). This suggests setting dn so that both n−4/5h1(dn, τn)

and n−4/5h2(dn, τn) → 0 as n → ∞ for τn = n2/5. By definition, h1(d, τ) = I1(d, τ) and

h2(d, τ) = I2(d, τ)
2 βf

3
. The integrals I1, I2 ≥ 0 are plotted in Figure 11. I1(d, τ) is decreasing

in τ for all d, and non-increasing in d as τ increases. I2(d, τ) is increasing in τ for all d, and

decreasing in d as τ increases. Therefore, setting dn to an increasing sequence of n is a sensible

choice because it (i) offsets the increase in h2 caused by the increasing τn sequence; and (ii)

causes no problems for h1, which decays to zero as τn increases.

How fast should dn increase with n? Theoretically, points (i) and (ii) imply that the faster,

the better. Practically, several factors restrict dn. First, the larger is the degree, the longer it

takes to evaluate K̃d,τ as its time complexity is O (d) conditional on having computed cd,τ ; if

cd,τ needs to be computed, its complexity is increased depending on the numerical integrator.

Second, computing term (1 + u2 − τ)d of K̃d,τ for large d either becomes imprecise due to

limited numerical precision, or, when a data type supporting arbitrary-precision arithmetic

is used, results in increased evaluation time. Hence, the choice is somewhat arbitrary. I set

dn := ⌊n4/5⌉2 < n, where ⌊.⌉2 means rounding to the nearest even integer, and numerically

analyse the MISE-bound for this choice.

Is dn = ⌊n4/5⌉2 and τn = n2/5 sufficient for Mdn,τn(h
∗(dn, τn, n))→ 0 as n→∞? Figure 5 de-

picts sequences dn, τn, bandwidth h∗bind(τn) and objectiveMdn,τn(h
∗
bind(τn)) ≥Mdn,τn(h

∗(dn, τn, n))

for given S, βf . For computational efficiency I round τn to the nearest integer, that is τn =

⌊n2/5⌉.7 Importantly, numerical results suggest that the sequences dn = ⌊n4/5⌉2, τn = ⌊n2/5⌉ are

sufficient for Mdn,τn(h
∗
bind(τn))→ 0 as n→∞, which in turn implies Mdn,τn(h

∗(dn, τn, n))→ 0.

What is the impact of S = [a, b] and βf on (the convergence of) the MISE-bound? By

definition, Md,τ (h
∗
bind(τ)) =

√
τh1(d,τ)
n(b−a)

+ (b−a)4

τ2
h2(d, τ), where h1(d, τ) = I1(d, τ) and h2(d, τ) =

I2(d, τ)
2 βf

3
. A larger S is associated with larger b−a. Hence a larger support has the same effect

as an increasing βf . Namely, larger S (or βf ) increases the influence of the second term in the

objective, (b−a)4

τ2
h2(d, τ), relatively to the first one,

√
τh1(d,τ)
n(b−a)

. As a consequence , the convergence

becomes more dominated by the second, bias term than before. This is analysed in more detail

in Appendix C.1.1.

To sum up, setting h := b−a√
τn
, dn := ⌊n4/5⌉2, τn := ⌊n2/5⌉ implies that the MISE-bound

in Proposition 3, Mdn,τn(h
∗(dn, τn, n)), converges to zero as the sample size n increases. The

magnitude of Mdn,τn(h
∗(dn, τn, n)) is affected by the support S and βf , and so is the speed of

convergence. Numerical analysis suggests, however, that Mdn,τn(h
∗(dn, τn, n)) → 0 as n → ∞

for all S (and βf ) discussed here and in Appendix C.1.1.

7The efficiency does not come from rounding per se. Rather, I need to access cd,τ many times during the thesis,

so that I precomputed (cd,τ )d∈N≤200,τ∈N≤104
.
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Figure 5: Statistically Optimal Parameter Choices; S = [0,1.5], βf = 3
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Notes: fitted line obtained by estimating the model yn = α0nα1εn with ordinary least squares after log - log transform for

yn := Mdn,τn (h
∗
bind

(τn)), some error term εn, and model parameters α0, α1.

3.5.2 Encryption Optimality

While h = b−a√
τn
, dn = ⌊n4/5⌉2, τn = ⌊n2/5⌉ imply the convergence of the MISE-bound, they lead to

unacceptable encryption security λ. For number of observations n = N/2, the security estimate

(1) reads 7.2n
L
− 110 ≥ λ with L ≥ (D(C)Mult + 1) log2 ∆. By Proposition 1, D(C)Mult ∝ d. Hence

dn := ⌊n4/5⌉2 would roughly lead to λ ≤ 7.2n1/5

log2 ∆
− 110. Even for a small precision log2 ∆ = 8,

this is non-negative only for n ≥ 234, and reaches a 60-bit security for n ≥ 238. HE applications

surveyed in this thesis rarely use N ≥ 216 – presumably due to slow performance.

Therefore, security considerations impose an upper bound on dn, which in turn affects τn as

follows. Previously, the increasing dn = ⌊n4/5⌉2 could offset the increase in the second, bias term

of Md,τn(h
∗
bind(τn)) =

h1(d,τn)

n4/5(b−a)
+ (b−a)4

n4/5 h2(d, τn) caused by the increasing τn = ⌊n2/5⌉. Bounded

by security requirements, dn may not be able to offset the increase. In fact, Figure 6a depicts

Mdn,τn(h
∗
bind(τn)) for τn = ⌊n2/5⌉ and constant dn = 100. Instead of vanishing, the MISE-bound

increases in n. Hence τn = ⌊n2/5⌉ becomes infeasible, especially for large S.

As a solution, I set dn to a constant, dn := 14, and τn := ⌊n1/5⌉ ≤ ⌊n2/5⌉. In contrast to

Figure 6a, Mdn,τn(h
∗
bind(τn)) → 0 as n → ∞ for these sequences (see Figure 6b). Appendix

C.1.2 shows that this finding is robust to even larger support up to S = [0, 106]. Regarding

security, the sequence dn := 14, together with the security estimate (1) and Proposition 1
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implies λ ≤ 7.2n
(14+2+1) log2 ∆

− 110, which is already non-negative for n ≥ 212, given precision

log2 ∆ = 8, and reaches a quite safe 6829-bit security for n = 217.

Last, note that if τn is not encrypted (it is not in this thesis) and h = b−a√
τn

, then the server

can easily infer the length of S = [a, b], b − a, from the non-encrypted h, as b − a =
√
τh.

Therefore in practice, unless one encrypts τ and adjusts Algorithms 1, 2, 8 the client should

send a set of bandwidths to the server, who can thus only make guesses which is the real one.

Figure 6: Encryption-optimal Parameter Choices; S = [0,100], βf = 3
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8E.g. by designing an encrypted look-up table for the normalising constant cd,τ of K̃d,τ similarly to Zhang et al.

(2015). Alternatively, the client simply computes cd,τ , encrypts it and send it to the server. As cd,τ enters K̃d,τ

multiplicatively and τ additively, this is feasible via the Mult and Add routines. The latter approach would

increase the multiplicative depth D(C)Mult of Proposition 1 by 1 to d+ 3.
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(b) Feasible Choice
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Notes: fitted line obtained by estimating the model yn = α0nα1εn with ordinary least squares after log - log transform for

yn := Mdn,τn (h
∗
bind

(τn)), some error term εn, and model parameters α0, α1.

4. Examples

This section demonstrates how HE-KDE works. I begin with non-encrypted data in Subsection

4.1, computing f̃d,τ in the clean without using Algorithms 1, 2, 3. This gives an “upper bound”

on the performance of f̃d,τ on encrypted data using Algorithms 1, 2, 3, which is worse due to

encryption. Performance on encrypted data is addressed in Subsection 4.2.

4.1. Non-encrypted Data

I draw i.i.d. samples from various distributions with bounded support, and estimate the density

value f(x) with f̃dn,τn(x) without encrypting the sample or x. I use the statistically optimal

parameter choices of Sub-subsection 3.5.1, with bandwidth h = b−a√
τn

, shift τn = ⌊n2/5⌉ and

degree dn = ⌊n4/5⌉2 for sample size n.

Figures 7a, 7b, 7c, 7d depict estimation for distributions Beta, Cosine, Generalised Pareto

and von Mises, respectively. Each figure features different parameter values for the given dis-

tribution. Beside estimates based on a single sample, Monte Carlo (MC) simulation results are

presented with a small number repetitions. In each repetition a new n-large sample is drawn,

x 7→ f̃d,τ (x) is computed and plotted. Figure 14 in Appendix C.2.1 contains the same plots

for other continuous, bounded-support distributions. f̃d,τ is a density function estimator, not

a probability mass function estimator. Thus f̃d,τ is not meant for discrete distributions. As an
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experiment, however, I include two discrete distributions with bounded-support in Figure 14 of

Appendix C.2.1.

We can make four general observations from the figures about all continuous distributions

above. First, HE-KDE exhibits a large bias and small variance. Second, the bias is more severe

around the boundaries (this happens to usual KDE too, e.g. Leblanc (2012)). Third, HE-KDE

performs better as the sample size increases, as both the (boundary) bias and variance de-

crease. The third point follows directly from results in the previous sections for continuously

differentiable densities. However, the densities in most figures are not continuously differen-

tiable, moreover, some of them are not even continuous on the boundary of their support

(limx↑c f(x) 6= limx↓c f(x) for c ∈ {a, b}). In fact, the only continuously differentiable (on R)

densities from above are that of the Cosine and the von Mises distribution (for some param-

eter values). Therefore, the convergent MISE (as n → ∞) appears to be robust for density

continuity-class assumptions for the distributions discussed here. Fourth, the variance of HE-

KDE is influenced by f . E.g. the variance is very small for Beta(6,2), VM(0,3) and Generalised

Pareto distributions where the probability mass is concentrated in a relatively small x-region.

The experiment with the discrete distributions reveals that HE-KDE can identify high-

probability regions. It also holds that the pointwise bias and variance decreases as n increases

in points where the true probability mass function is non-zero. Of course, it has a substantial

non-vanishing bias at points where the probability mass function is zero as the low-variance

estimator interpolates f̃d,τ -values in those points.

In short, HE-KDE has small variance but large bias. It performs “reasonably” for n = 64

and the performance improves as n increases because the variance and bias decreases. This

seems to hold for all continuous distributions discussed here regardless of the continuity-class

of their densities.
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Figure 7: HE-KDE Non-encrypted Examples

(a) Beta Distribution
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(b) Cosine Distribution
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(c) Generalised Pareto Distribution
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(d) von Mises Distribution
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Notes: h = b−a√
τn

, τn = ⌊n2/5⌉, dn = ⌊n4/5⌉2. First column: Non-encrypted HE-KDE estimate f̃dn,τn for a single n-large sample

from true density f . Sample values indicated on the x-axis with “|”. Second and third columns: Monte Carlo (MC) simulations.

Each thin line, depicting non-encrypted x 7→ f̃dn,τn (x), corresponds to a MC repetition. There are 20 repetitions. Thick red line is

the mean of x 7→ f̃dn,τn (x) across MC repetitions. Each row corresponds to different f -parameters (in brackets in the first column).

f and f̃dn,τn are evaluated at 100 equidistant points.
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4.2. Encrypted Data

The exercise in the previous subsection is repeated – this time for encrypted data. I draw

i.i.d. samples from the same distributions, and estimate f(x) with f̃dn,τn(x) using (a slightly

simplified version9 of) Algorithms 1, 2, 3 with the HEAAN-1.0 C++ library of Cheon et al. (2017).

The encryption-optimal parameter choices h = b−a√
τn
, τn = ⌊n1/5⌉, dn = 14 are adopted from Sub-

subsection 3.5.2. I set the initial ciphertext level L := 1380 and precision log2 ∆ := 80, which

implies a security level λ ≤ 7.2n
(14+2+1)·80 − 110. Hence, for n = 215, n = 216 we have 63-bit and

236-bit security, respectively.

Similarly to the non-encrypted examples, Figures 8a, 8b, 8c, 8d depict estimation and MC

results for distributions Beta, Cosine, Generalised Pareto and von Mises, respectively. The non-

encrypted HE-KDE is also plotted with the encryption-optimal parameter choices. Figure 15 in

Appendix C.2.2 contains the same plots for other continuous, bounded-support distributions.

Two discrete distributions with bounded-support are included in Figure 15 of Appendix C.2.2.

We can make the following observations about the figures.

First, computing f̃dn,τn on encrypted data entails no visible loss of precision compared to

non-encrypted data: the graph of encrypted HE-KDE (cyan line) perfectly covers that of the

non-encrypted HE-KDE (red line).

Second, all observations made about non-encrypted HE-KDE with statistically optimal

parameter choices in Subsection 4.1 continue to hold. HE-KDE has small variance but large

bias, especially around the boundaries of the support. Both the variance and the bias decreases,

thus HE-KDE performs better, when the sample size n increases. The variance of HE-KDE is

influenced by f . Observations about the discrete distribution experiment hold as well.

Third, there are substantial differences in the properties of HE-KDE between statistically op-

timal and encryption-optimal parameter choices. Compared to Figures 7a, 7b, 7c, 7d with statis-

tically optimal parameter choices, the encryption-optimal parameter choices imply worse perfor-

mance. The performance of HE-KDE with encryption-optimal parameters for n = 215 = 16384

is worse than that of HE-KDE with statistically optimal parameters for n = 26 = 64. Recall,

however, that the worse statistical performance is the price paid for security. Another difference

is that encryption-optimal parameters induce smaller variance. This is a direct consequence of

the first, variance term of Mdn,τn(h
∗
bind(τn)) becoming smaller for smaller τn.

In short, HE-KDE with encryption-optimal parameters performs worse than HE-KDE with

statistically optimal parameters. The bad performance is driven by the bias; the variance is

very low. When the sample size increases, its performance improves and so does encryption

security.

9The only modification is that the summation at line 17 of Algorithm 2 is performed by the client in Algorithm

3 to speed up execution.

25



Máté Kormos MPhil Thesis

Figure 8: HE-KDE Encrypted Examples

(a) Beta Distribution
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(b) Cosine Distribution
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(c) Generalised Pareto Distribution
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(d) von Mises Distribution
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Notes: h = b−a√
τn

, τn = ⌊n1/5⌉, dn = 14. First column: HE-KDE estimate f̃dn,τn (non-encrypted and encrypted) for a single n-large

sample from true density f . Non-encrypted sample values indicated on the x-axis with “|”. Second and third columns: Monte Carlo

(MC) simulations. Each thin line, depicting f̃dn,τn , corresponds to a MC repetition on encrypted data. Thick cyan line is the

mean of f̃dn,τn (x) across MC repetitions on encrypted data. Thick red line is the mean of f̃dn,τn (x) across MC repetitions on

non-encrypted data (not plotted). There are 10 repetitions. Each row corresponds to different f -parameters (in brackets in the first

column). In the first column, f and f̃dn,τn are evaluated at 50, in the other columns, at 20 equidistant points.
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4.2.1 Is the Bandwidth Too Conservative?

The large bias of encryption-optimal HE-KDE is due to h = h∗bind(τn) =
b−a√
τn

being too large

as the encryption-optimal τn is smaller than the statistically optimal τn. Moreover, the choice

h := h∗bind(τn) is conservative in the first place (see Subsection 3.5). In this sub-subsection, a

Monte Carlo experiment is conducted to explore the effect of scaling h = h∗bind(τn) =
b−a√
τn

, where

τn = ⌊n1/5⌉, on the empirical pointwise bias.

Figure 9 depicts the empirical pointwise bias as a function of bandwidth h for the distribu-

tions in Figures 8, 15. Bias is computed from the empirical expectation taken over MC repeti-

tions. In each repetition, a new n-large i.i.d. sample is drawn from f and then h 7→ f̃dn,τn(x) is

computed for different x. For computational efficiency, data are not encrypted. This is without

loss of generality, as we saw previously that encryption does not really matter for the results,

unlike the choice of τn, dn. The bandwidth h = h∗bind(τn) =
b−a√
τn
, τn = ⌊n1/5⌉, is plotted with

vertical dashed line. Thus, to left of the dashed line a less conservative, while to the right of it

a more conservative bandwidth is used.

We can observe that the empirical bias of f̃dn,τn(x) when evaluated at the mean of the

distribution is always smaller or the same for less conservative, smaller bandwidths presented

here. This observation, however, does not carry over to other evaluation points: the empirical

bias increases for smaller h for e.g. the median of the Generalised Pareto distribution, or the

mean plus/minus two standard deviations for the von Mises distribution. Importantly, when

h is 70% of the benchmark choice b−a√
τn

, the empirical bias at the 10% (or 90%) quantile of

the Arcsine distribution increases sharply. It is because a too small h causes the inputs of

the HE-kernel K̃d,τ to fall outside the “sensible weighting” region (see Subsection 3.3). As a

consequence, dissimilar observations to x start to get larger weights than similar ones. This

leads to larger bias, especially for multimodal distributions when f̃dn,τn(x) is evaluated at an x

near the boundary of the support of f .

Thus, we can conclude that while the bandwidth choice h = h∗bind(τn) =
b−a√
τn

might be too

conservative for unimodal distributions, it is not conservative for multimodal distributions for

evaluation points near the boundary of the support. Therefore, h = h∗bind(τn) =
b−a√
τn

is a safe

choice ensuring “sensible weighting”.
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Figure 9: Empirical Bias of HE-KDE as a Function of Bandwidth
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Notes: τn = ⌊n1/5⌉, dn = 14, n = 215. h = b−a√
τn

is indicated by the dashed, vertical black lines. Other h values of evaluation are

70, 80, 90, 95, 110, 130, 150, 170 percent of h = b−a√
τn

. qα is the α-th quantile given by F (qα) = α for the cumulative distribution

function F of the probability density function f . σ is the standard deviation of the VM distribution. Each line depicts the empirical

bias, with empirical expectation computed from MC simulation with 20 repetitions on non-encrypted data, as a function of h, for

a given x.

5. Conclusion

I proposed an estimator for univariate kernel density estimation (KDE), for bounded support

probability density functions, on ring-homomorphically encrypted (HE) data, called HE-KDE.

HE-KDE makes it possible for a client to outsource density estimation to a cloud without

exposing the non-encrypted data to the cloud. To the best of my knowledge, this thesis is the

first work to address (nonparametric) density estimation on encrypted data.

The encryption-related shortcomings of kernels typically used for KDE were discussed. HE-

KDE fixes these issues by using a polynomial which locally approximates a kernel. HE-KDE

routine is comprised of two parts: (i) the HE-adjusted estimator on non-encrypted data; and

(ii) algorithms enabling its use with an HE-scheme on encrypted data.

In contrast to many HE papers, I carefully investigated the theoretical properties of the

HE-adjusted estimator on non-encrypted data. The estimator is non-negative, and its integral

is bounded by one. However, it is defective as the integral need not be one. Numerical analy-

sis suggests that if, for increasing sample size (n), the degree of the approximate polynomial

increases, the mean integrated square error (MISE) goes to zero faster than when the degree
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does not increase. Increasing degree, however, implies weaker encryption security and longer

computation time. Thus, there is a trade-off between the “goodness” of the estimator and both

encryption security and computational costs.

A polynomial balancing these aspects was designed: an MISE-bound of order O (n−0.5) can

be reached for sufficiently smooth, twice continuously differentiable densities, with support of

length ≤ 106, together with a security level λ ≤ 7.2n
1360
− 110. This translates into a “reasonable”

performance and a 63-bit security for n = 215 = 32768. When the support is smaller or the

density is smoother, the magnitude of the MISE-bound decreases and the convergence speed

increases. Pseudo code for the algorithms enabling the use of the estimator with the CKKS

(HEAAN) encryption scheme (Cheon et al., 2017) was provided, and usage examples presented.

Numerical experiments suggest that “reasonable” performance might carry over to densities that

are not continuous – hence not differentiable – everywhere on the real line.
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Appendices

A. Proofs

A.1. Proposition 1

Proof. Table 1 records the cumulative number of multiplications ciphertexts cpower and cterm)

are involved in when the given line of Algorithm 2 is finished executing.

The recording starts at line 10. By line 8, cpower is involved in 2 multiplications via c:

multiplication with ȟ and squaring. Thus cpower starts from 2 multiplications. At line 9, cterm

is derived from cpower by a multiplication, thus it start from 2 + 1 = 3 multiplications.

In each iteration of the for-loop, cpower is involved in one additional multiplication. cterm is

derived from cpower by another multiplication so it has one more multiplication than cpower by

line 13. There are d−1 repetitions in the for-loop. Hence when the last repetition is completed,

cpower is involved in 2+ (d− 1) multiplications, thus cterm is involved in 2+ (d− 1)+ 1 = d+2.

The ciphertexts c, cresult do not participate in further multiplications. Hence we conclude

that the multiplicative depth of Algorithm 2 is d+ 2 as was to be shown.

Table 1: Cumulative Number of HE Multiplications in Algorithm 2

Line cpower cterm

Before loop, line 10 2 3

Loop k = 2, line 12 3 (+1) 3

Loop k = 2, line 13 3 =⇒ 4 (+1)

Loop k = 3, line 12 4 (+1) 4

Loop k = 3, line 13 4 =⇒ 5 (+1)
...

...
...

Loop k = d, line 12 2 + (d− 1) (+1) 2 + (d− 1)

Loop k = d, line 13 2 + (d− 1) =⇒ 2 + (d− 1) + 1 (+1)

Notes: (+1) indicates the change in the number of multiplications.

�

A.2. Proposition 2

Proof. (i) f̃d,τ (x) ≥ 0. It is sufficient to show that K̃d,τ (u) ≥ 0 ∀u ∈ [+−
√
τ ], which I do

by showing non-negativity of the unnormalised kernel u 7→ γ +
∑d

k=1wk(1 + u2 − τ)k.

Rewrite this as t 7→ γ +
∑d

k=1wkt
k where t := 1 + u2 − τ ∈ [1 − τ, 1]. I partition the

domain [1− τ, 1] = [1− τ, 0] ∪ [0, 1] and consider the partitions separately.
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When t ∈ [1− τ, 0], then for all odd k, wk < 0 by definition, hence wkt
k ≥ 0. For all even

k, wk > 0 (see Figure 10), hence wkt
k ≥ 0. Thus t 7→ γ +

∑d
k=1wkt

k ≥ 0 ∀t ∈ [1 − τ, 0]
because γ ≈ 0.577 > 0.

When t ∈ [0, 1], I visually inspect t 7→ γ+
∑d

k=1wkt
k for different even degrees. Figure 10

depicts the function t 7→ mind∈D γ +
∑d

k=1wkt
k, for D := {2, 4, . . . , 10000} and t ∈ [0, 1].

This function is always positive, thus t 7→ γ +
∑d

k=1wkt
k ≥ 0 ∀t ∈ [0, 1]. To conclude,

as the unnormalised kernel is always positive, the normalising constant cd,τ is always

positive, hence K̃d,τ (u) ≥ 0 ∀u ∈ [+−
√
τ ], ∀τ ∈ R≥1, and for all even d ∈ N.

(ii)
∫

S
f̃d,τ (x)dx ≤ 1. By definition,

∫

S
f̃dτ (x)dx =

∫ b

a
1
nh

∑

i∈[n] K̃d,τ

(
x−xi

h

)
dx. Using Tonelli’s

theorem to interchange summation and integral,

∫ b

a

1

nh

∑

i∈[n]
K̃d,τ

(
x− xi

h

)

dx =
∑

i∈[n]

1

nh

∫ b

a
K̃d,τ

(
x− xi

h

)

dx.

After a change of variable z := x−xi

h
, we can upper bound the integral by increasing its

upper, and decreasing its lower limit, since K̃d,τ (z) ≥ 0 for all z ∈ [+−
√
τ ] ⊃ [a−b

h
, b−a

h
] ⊃

[a−xi

h
, b−xi

h
] ∀i ∈ [n] because x, xi ∈ [a, b] and h ≥ b−a√

τ
.

∑

i∈[n]

1

nh

∫ b−xi
h

a−xi
h

K̃d,τ (z)hdz ≤
∑

i∈[n]

1

n

∫ b−a
h

a−b
h

K̃d,τ (z) dz ≤
∑

i∈[n]

1

n

∫ √
τ

−√
τ
K̃d,τ (z)dz = 1

where the last step (= 1) follows from construction of K̃d,τ .

�

Figure 10: Local Approximate Kernel: Sign Properties
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Notes: in the right figure, a step size of 0.05 is used for t for evaluation.
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A.3. Proposition 3

Proof. (i) V

[

f̃d,τ (x)
]

. By definition, V
[

f̃d,τ (x)
]

= V

[
1
nh

∑

i∈[n] K̃d,τ

(
x−xi

h

)]

. By Tonelli’s

theorem and that (xi)i∈[n] is i.i.d., we have

V




1

nh

∑

i∈[n]
K̃d,τ

(
x− xi

h

)


 =
1

n2h2

∑

i∈[n]
V

[

K̃d,τ

(
x− xi

h

)]

=
1

nh2
V

[

K̃d,τ

(
x− xi

h

)]

for some i ∈ [n]. Note that V

[

K̃d,τ

(
x−xi

h

)]

= E

[

K̃d,τ

(
x−xi

h

)2
]

− E

[

K̃d,τ

(
x−xi

h

)]2

≤

E

[

K̃d,τ

(
x−xi

h

)2
]

, where

E

[

K̃d,τ

(
x− xi

h

)2
]

=

∫ b

a
K̃d,τ

(
x− t

h

)2

f(t)dt

=

∫ x−b
h

x−a
h

K̃d,τ (z)
2 f(x− hz)(−h)dz = h

∫ x−a
h

x−b
h

K̃d,τ (z)
2 f(x− hz)dz

with a change of variables z := x−t
h

. We can change the limit of the integral by noticing

that f(x − hz) = 0 whenever x − hz /∈ [a, b] (because the support of f is [a, b]), which

happens if either z > x−a
h

or z < x−b
h

. Provided that K̃d,τ (z)
2 < ∞ when z ∈ [+−

√
τ ],

K̃d,τ (z)
2 f(x − hz) = 0 when z ∈ (x−a

h
,
√
τ) or z(−√τ , x−b

h
). Because x ∈ [a, b] and

h ≤ b−a√
τ
, both of these intervals are well-defined: x−a

h
≤ √τ and −√τ ≤ x−b

h
. Thus,

∫ x−a
h

x−b
h

K̃d,τ (z)
2 f(x− hz)dz =

∫ √
τ

−√
τ
K̃d,τ (z)

2 f(x− hz)dz. Last, apply Taylor-expansion to

f(x− hz) around x to obtain

∫ √
τ

−√
τ
K̃d,τ (z)

2 f(x− hz)dz =

∫ √
τ

−√
τ
K̃d,τ (z)

2 [f(x)− hzf ′(x) + o(h)
]
dz =: (nh) · V (x, n, h, d, τ)

Thus,

V

[

f̃d,τ (x)
]

≤ 1

nh2
E

[

K̃d,τ

(
x− xi

h

)2
]

≤ V (x, n, h, d, τ) ≈ f(x)

nh
I1(d, τ).

for n large, h small.

(ii) ❇✐❛s(f̃d,τ (x)). By definition ❇✐❛s(f̃d,τ (x)) = E

[

f̃d,τ (x)
]

− f(x). Using Tonelli’s theorem

and that (xi)i∈[n] is i.i.d., we have

E

[

f̃d,τ (x)
]

= E




1

nh

∑

i∈[n]
K̃d,τ

(
x− xi

h

)


 =
1

h
E

[

K̃d,τ

(
x− xi

h

)]

=
1

h

∫ b

a
K̃d,τ

(
x− t

h

)

f(t)dt.

The change of variables z := x−t
h

yields 1
h

∫ b

a
K̃d,τ

(
x−t
h

)
f(t)dt = −h

h

∫ x−b
h

x−a
h

K̃d,τ (z) f(x −

hz)dz =
∫ x−a

h
x−b
h

K̃d,τ (z) f(x− hz)dz.

Again, we can change the limit of the integral by noticing that (ii.1) f(x − hz) = 0

whenever x − hz /∈ [a, b] (because the support of f is [a, b]), which happens if either
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z > x−a
h

or z < x−b
h

; and that (ii.2) K̃d,τ (z) < ∞ when z ∈ [+−
√
τ ] because K̃d,τ (z) ≥ 0

when z ∈ [+−
√
τ ] and

∫ √
τ

−√
τ
K̃d,τ (z) dz = 1. As a consequence, K̃d,τ (z) f(x−hz) = 0 when

z ∈ (x−a
h
,
√
τ) or z(−√τ , x−b

h
). Thus, changing limit and applying Taylor expansion to

f(x− hz) around x gives

E

[

f̃d,τ (x)
]

=

∫ x−a
h

x−b
h

K̃d,τ (z) f(x− hz)dz =

∫ √
τ

−√
τ
K̃d,τ (z) f(x− hz)dz

=

∫ √
τ

−√
τ
K̃d,τ (z)

[

f(x)− f ′(x)hz +
f ′′(x)
2

(hz)2 + o(h2)

]

dz.

Using that
∫ √

τ

−√
τ
K̃d,τ (z) dz = 1 and that

∫ √
τ

−√
τ
zkK̃d,τ (z) dz = 0 for all odd k ∈ N due to

symmetry of K̃d,τ , yields

❇✐❛s(f̃d,τ (x)) =
h2f ′′(x)

2
I2(d, τ) + o(h2).

(iii) MISE(f̃d,τ (x)). I follow the proof of van der Vaart (2002). By definition MISE(f̃d,τ (x)) =
∫ b

a
E

[

(f̃d,τ (x)− f(x))2
]

dx =
∫ b

a

(

V

[

f̃d,τ (x)
]

+❇✐❛s(f̃d,τ (x))
2
)

dx. Below I compute the

integrated variance and squared bias.

Integrated variance. Using results from (i) and Tonelli’s theorem,

∫ b

a
V

[

f̃d,τ (x)
]

dx ≤
∫ b

a

1

nh

∫ √
τ

−√
τ
K̃d,τ (z)

2 f(x−hz)dzdx =
1

nh

∫ √
τ

−√
τ
K̃d,τ (z)

2
∫ b

a
f(x−hz)dxdz.

Change variables t := x−hz, so that
∫ b

a
f(x−hz)dx =

∫ b−hz

a−hz
f(t)dt ≤ 1 because b−hz >

a− hz and f has support [a, b]. Therefore,
∫ b

a
V

[

f̃d,τ (x)
]

dx ≤ 1
nh

∫ √
τ

−√
τ
K̃d,τ (z)

2 = I1(d,τ)
nh

.

Integrated squared bias. Based on (ii), E
[

f̃d,τ (x)
]

=
∫ √

τ

−√
τ
K̃d,τ (z) f(x − hz)dz, so that

we can write ❇✐❛s(f̃d,τ (x)) = E

[

f̃d,τ (x)
]

− f(x) =
∫ √

τ

−√
τ
K̃d,τ (z) (f(x − hz) − f(x))dz

because
∫ √

τ

−√
τ
K̃d,τ (z) dz = 1. Applying Taylor expansion to f(x−hz) with the Laplacian

representation of the remainder yields

∫ √
τ

−√
τ
K̃d,τ (z) (f(x− hz)− f(x))dz =

∫ √
τ

−√
τ

∫ 1

0
K̃d,τ (z)

[
−hzf ′(x)− (hz)2f ′′(x− shz)(1− s)

]
dsdz

= −h2
∫ √

τ

−√
τ

∫ 1

0
K̃d,τ (z) z

︸︷︷︸

:=U

zf ′′(x− shz)(1− s)
︸ ︷︷ ︸

:=V

dsdz

as
∫ √

τ

−√
τ
zK̃d,τ (z) dz = 0 due to symmetry of K̃d,τ . The double integral can be thought

of as an expectation E [UV ] of independent random variables U with density K̃d,τ and s

uniformly distributed on [0,1] with density 1. By Cauchy-Schwartz inequality E [UV ]2 ≤
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E [U2]E [V 2]. Therefore we can upper bound the term above as

❇✐❛s(f̃d,τ (x))
2 ≤ h4

(
∫ √

τ

−√
τ
K̃d,τ (z) z

2dz

)

︸ ︷︷ ︸

E[U2]

(
∫ √

τ

−√
τ

∫ 1

0
K̃d,τ (z) z

2f ′′(x− shx)2(1− s)2dsdz

)

︸ ︷︷ ︸

E[V 2]

= h4I2(d, τ)

(
∫ √

τ

−√
τ

∫ 1

0
K̃d,τ (z) z

2f ′′(x− shx)2(1− s)2dsdz

)

.

Hence

∫ b

a
❇✐❛s(f̃d,τ (x))

2dx ≤ h4I2(d, τ)

(
∫ √

τ

−√
τ

∫ 1

0
K̃d,τ (z) z

2

∫ b

a
f ′′(x− shx)2dx(1− s)2dsdz

)

≤ h4I2(d, τ)
2βf
3

where the last step follows from the assumption
∫

S
f ′′(x − β)dx ≤ βf and that

∫ 1

0
(1 −

s)2ds = 1/3 is the second moment of the uniformly distributed random variable 1− s on

[0, 1]. Therefore,

MISE(f̃d,τ ) =

∫ b

a

(

V

[

f̃d,τ (x)
]

+❇✐❛s(f̃d,τ (x))
2
)

dx

≤ I1(d, τ)

nh
+ h4I2(d, τ)

2βf
3
.

�

A.4. Proposition 4

Proof. Md,τ : R++ → R+ is twice differentiable and its second derivative is M ′′
d,τ (h) =

2h1(d,τ)
nh3 +

12h2h2(d, τ). For every non-trivial K̃d,τ , the functions h1(d, τ), h2(d, τ) > 0, hence M ′′
d,τ (h) > 0

for all h ∈ R++. That is, Md,τ is strictly convex, obtaining a global minimum on R++ at

the critical point h∗nonbind : M ′
d,τ (h

∗
nonbind) = 0. It follows that h∗nonbind =

(
h1(d,τ)

4h2(d,τ)n

)1/5

=:

h∗nonbind(d, τ), and the global minimum is Md,τ (h
∗
nonbind(d, τ)) = (27h2(d, τ)h1(d, τ)

4n−4)
1/5

.

Consider imposing the linear constraint h ≥ b−a√
τ
. If h∗nonbind(d, τ) >

b−a√
τ

=: h∗bind(τ), then

the constraint is not binding because h∗nonbind(d, τ) is the global minimiser. If h∗nonbind(d, τ) ≤
h∗bind(τ), the constraint is binding because Md,τ (h) is strictly convex and limh→∞Md,τ (h) =∞.

Therefore, the constraint is binding if and only if h∗nonbind(d, τ) ≤ h∗bind(τ). In that case the

objective value is Md,τ (h
∗
bind(τ)) =

√
τh1(d,τ)
n(b−a)

+ (b−a)4

τ2
h2(d, τ). Because Md,τ (h

∗
nonbind(d, τ)) =

minh∈R++ Md,τ (h) and Md,τ (h
∗
bind(τ)) = minh∈R++:h≥ b−a√

τ
Md,τ (h), we have Md,τ (h

∗
bind(τ))

≥Md,τ (h
∗
nonbind(d, τ)) as {h ∈ R++ : h ≥ b−a√

τ
} ⊂ R++. �
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B. Algorithms

Algorithm 4 Sum

input: c encrypting (the encoding of) (zj)j∈T under secret key sk; switching keys (swki,j)i,j∈T where

swki,j = KSGen(κk(sk)) with k = j−1i (mod 2N)

output: cs encrypting (the encoding of) (ẑj)j∈T , the first element of which is
∑

j∈T zj

1: let Ψ : T → {1, 2, . . . , N/2} be an invertible mapping (e.g. enumerate T )

2: cs := c

3: for i ∈ {2, . . . , N/2} do

4: cperm := Perm
Ψ−1(i)→Ψ−1(1)
swkΨ−1(i),Ψ−1(1)

(c) ⊲ map i-th element to first element

5: cs := Add(cs, cperm) ⊲ encrypting a vector with first element
∑i

j=1 zΨ−1(j)

6: return cs
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C. Figures

Figure 11: Integrals I1, I2 of Proposition 3
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C.1. Parameter Choices

In the following Sub-subsections C.1.1 and C.1.2, I illustrate the impact of S and βf on the

convergence of MISE-bound, continuing the discussion on statistical and encryption optimality

in Subsection 3.5. I set a := 0 and fix βf . Then I replicate Figures 5 and 6 for different values

of b. Without loss of generality, this corresponds to increasing S or βf .

C.1.1 Statistical Optimality

For h = b−a√
τn
, τn = ⌊n2/5⌉, dn = ⌊n4/5⌉2, Figure 12 replicates Figure 5 for different values of b.

Two conclusions can be drawn.

First, the larger is the support S (or βf ), the larger is the MISE-bound. This follows from

the fact that Mdn,τn(h
∗
bind(τn))

∣
∣
h∗
bind

(τn)=
b−a√
τn

= h1(dn,τn)

n4/5(b−a)
+ (b−a)4

n4/5 h2(dn, τn) for τn = n2/5. Larger

S leads to higher bandwidth h, which increases the term corresponding to the squared bias,
(b−a)4

n4/5 h2(dn, τn). Intuitively, larger support forces distant observations closer than they should

be so that they fall in the “sensible weighting” region of the kernel. This leads to larger bias.

Larger βf means that the density f “changes a lot” in its support, therefore over-weighting (h

not small enough) leads to larger bias.

Second, the larger is the support S (or βf ), the faster is the convergence of MISE-bound

to zero. Larger S increases the influence of the second (bias) term (b−a)4

n4/5 h2(dn, τn) on the con-

vergence compared to the first one h1(dn,τn)

n4/5(b−a)
. The second term is the one dn mostly affects, via
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I2 (see Subsection 3.5), and this effect is strong as suggested by Figure 11. As a consequence,

we witness a faster convergence. This mechanism is visible in the first and second row, sec-

ond column plots in each of Figure 12. As S increases, the smaller role τ plays in lowering

Mdn,τ (h
∗
bind(τ)); and the larger role d plays in lowering Md,τn(h

∗
bind(τn)).

Figure 12: Statistically Optimal Parameter Choices for Different S

(a) S = [0,0.01], βf = 3
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(b) S = [0,1], βf = 3
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(c) S = [0,1.2], βf = 3

50 100 150 200

10
20
30
40
50
60
70

20 40 60 80 100

50

100

150

200

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0 250 500 750 1000

5.0

7.5

10.0

12.5

15.0

10 20 30 40 50

200

400

600

800

1000

0.05
0.10
0.15
0.20
0.25

0 250 500 750 1000

0.3

0.4

0.5

0.6

0.7

20 40 60 80 100

0.04

0.06

0.08

0.10

(d) S = [0,1.7], βf = 3

50 100 150 200

10
20
30
40
50
60
70

20 40 60 80 100

50

100

150

200

0.025
0.050
0.075
0.100
0.125
0.150
0.175

0 250 500 750 1000

5.0

7.5

10.0

12.5

15.0

10 20 30 40 50

200

400

600

800

1000

0.05

0.10

0.15

0.20

0.25

0 250 500 750 1000

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100

0.02

0.04

0.06

0.08

0.10

(e) S = [0,10], βf = 3
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(f) S = [0,10000], βf = 3
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Notes: fitted line obtained by estimating the model yn = α0nα1εn with ordinary least squares after log - log transform for

yn := Mdn,τn (h
∗
bind

(τn)), some error term εn, and model parameters α0, α1.
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C.1.2 Encryption Optimality

For h = b−a√
τn
, τn = ⌊n1/5⌉, dn = 14, Figure 12 replicates Figure 13 for different values of b. The

first conclusion in C.1.1 continues to hold. That is, for larger S (or βf ), the MISE-bound is also

larger. This is because Mdn,τn(h
∗
bind(τn))

∣
∣
h∗
bind

(τn)
= h1(dn,τn)

n9/10(b−a)
+ (b−a)4h2(dn,τn)

τ
2/5
n

for τn = ⌊n1/5⌉, dn =

14. The second conclusion in C.1.2 does not hold anymore. That is, for larger S (of βf ), the

speed of convergence becomes slower rather than faster. This is expected – it is due to the

same reason as faster convergence in C.1.1. Namely, larger S leads to increased importance of

the second, bias term in Mdn,τn(h
∗
bind(τn)). While an increasing dn in C.1.1 decreased the bias

term, the constant dn = 14 does not have such an effect. However, there is convergence, even

for S = [0, 106], and, importantly, it is achieved together with an acceptable level of encryption

security λ.

Figure 13: Encryption-optimal Parameter Choices for Different S

(a) S = [0,0.1], βf = 3

0 250 500 750 1000

14.1

14.4

14.7

15.0

200 400 600 800 1000

200

400

600

800

1000

0.25
0.50
0.75
1.00
1.25
1.50
1.75

0 250 500 750 1000

2.0

2.5

3.0

3.5

4.0

20 40 60 80 100

200

400

600

800

1000

0.5
1.0
1.5
2.0
2.5

0 250 500 750 1000

0.050

0.055

0.060

0.065

0.070

0 250 500 750 1000
0.0
0.2
0.4
0.6
0.8
1.01.0

(b) S = [0,1], βf = 3
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(c) S = [0,10], βf = 3

0 250 500 750 1000

14.1

14.4

14.7

15.0

200 400 600 800 1000

200

400

600

800

1000

10
20
30
40
50
60

0 250 500 750 1000

2.0

2.5

3.0

3.5

4.0

20 40 60 80 100

200

400

600

800

1000

50
100
150
200
250
300
350
400

0 250 500 750 1000

5.0

5.5

6.0

6.5

7.0

0 250 500 750 1000

10
20
30
40
50
60
70

(d) S = [0,100], βf = 3
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(e) S = [0,1000], βf = 3
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(f) S = [0,1000000], βf = 3
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Notes: fitted line obtained by estimating the model yn = α0nα1εn with ordinary least squares after log - log transform for

yn := Mdn,τn (h
∗
bind

(τn)), some error term εn, and model parameters α0, α1.
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C.2. HE-KDE Examples

C.2.1 Non-encrypted Data

Figure 14: HE-KDE More Non-encrypted Examples
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(b) Semicircle Distribution
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(c) Triangular Distribution
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(d) Binomial Discrete Distribution
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(e) Beta-binomial Discrete Distribution
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Notes: h = b−a√
τn

, τn = ⌊n2/5⌉, dn = ⌊n4/5⌉2. First column: Non-encrypted HE-KDE estimate f̃dn,τn for a single n-large sample

from true density f . Sample values indicated on the x-axis with “|”. Second and third columns: Monte Carlo (MC) simulations.

Each thin line, depicting non-encrypted x 7→ f̃dn,τn (x), corresponds to a MC repetition. There are 20 repetitions. Thick red line is

the mean of x 7→ f̃dn,τn (x) across MC repetitions. Each row corresponds to different f -parameters (in brackets in the first column).

f and f̃dn,τn are evaluated at 100 equidistant points.
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C.2.2 Encrypted Data

Figure 15: HE-KDE More Encrypted Examples

(a) Arcsine Distribution
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(b) Semicircle Distribution
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(c) Triangular Distribution
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(d) Binomial Discrete Distribution
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(e) Beta-binomial Discrete Distribution
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Notes: h = b−a√
τn

, τn = ⌊n1/5⌉, dn = 14. First column: HE-KDE estimate f̃dn,τn (non-encrypted and encrypted) for a single n-large

sample from true density f . Non-encrypted sample values indicated on the x-axis with “|”. Second and third columns: Monte Carlo

(MC) simulations. Each thin line, depicting f̃dn,τn , corresponds to a MC repetition on encrypted data. Thick cyan line is the

mean of f̃dn,τn (x) across MC repetitions on encrypted data. Thick red line is the mean of f̃dn,τn (x) across MC repetitions on

non-encrypted data (not plotted). There are 10 repetitions. Each row corresponds to different f -parameters (in brackets in the first

column). In the first column, f and f̃dn,τn are evaluated at 50, in the other columns, at 20 equidistant points.
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